5.2 Calculations

5.2.1 Standard formulae

5.2.1.1 Water and soil calculations

Eqn 1 Crop evapotranspiration (ET_{crop})

The crop water requirement calculated is described as crop-adjusted evapo-transpiration (ET_{crop}) , by adjusting PET to account for crop specifics and ground cover.

 $ET_{crop} = PET \times K_c$

Where

ET_{crop} is crop-adjusted evapo-transpiration (mm/d)

PET is reference potential evapo-transpiration (mm/d)

 K_c is the crop water use co-efficient

And $Kc = K_{crop} \times K_{gc}$ Where K_{crop} is crop specific water use factor K_{ac} is the ground cover fraction

Eqn 2 Crop water use (ET_{limited})

Actual crop water use is a function of PET, limited by soil available water. Potential water use in any period is given by ETcrop. Where soil moisture is limited, the actual water use will be the maximum of ETcrop or available soil moisture (ASM)

 $ET_{limited} = greater of: ET_{crop} or ASM + (P+I)$

Where

ET_{limited} is actual crop water use

ET_{crop} is crop water use by evapo-transpiration

ASM is available soil moisture

- *I* is beneficial water requirement applied by irrigation system
- *P* is precipitation

Eqn 3 Potential soil moisture deficit (PSMD)

Potential crop growth is reduced in any period where crop water use is restricted due to low soil water availability. PSMD is a measure of moisture stress experienced by a crop, relative to the climatic potential moisture use. PSMD can be estimated from Potential crop water use (ET_{crop}) and actual (water limited) crop water use (ET_{limited}).

$$PSMD = ET_{crop} - ET_{lim ited} : ET_{crop} > ET_{lim ited}$$

Where:

PSMD is potential soil moisture deficit in any period where SMD>D_c

ET_{crop} is crop water use by evapo-transpiration

ET_{limited} is actual crop water use

5.2.1.2 System capacity calculations

Eqn 4 Design system capacity (SC_{des})

The flow of water per hectare of irrigated area determined by the designer of the system. Presumed to be the basis for the subsequent design. The value would normally be selected based on need to replace water used by the crop plus any additional amounts for other purposes. However water source limitations or regulatory maxima may necessitate a lower value.

Eqn 5 Required system capacity (SC_{req})

The flow of water per hectare of irrigated area required to replace water used by the crop (plus any additional amounts for other purposes) in the time available.

$$SC_{des} = \frac{PET \times K_c \times 24 \times 3600}{10,000} \times \frac{T_{irrig}}{T_{rot}}$$

Where

SC_{des}	is design system capacity (L/s/ha)
PET	is reference potential evapo-transpiration (mm/d)
K _c	is the crop water use co-efficient
T _{irrig}	is time irrigating per rotation (hrs)

T_{rot} is time per rotation (hrs)

Eqn 6 Potential system capacity (SC_{pot})

The flow of water per hectare of irrigated area that can be supplied if the system as operating was run for 24 hours per day. It is calculated from measured or calculated system flow rate divided by the measured or calculated area irrigated.

$$SC_{pot} = \frac{Q_{sys}}{A_{irrig}}$$

Where

 SC_{pot} is potential system capacity (L/s/ha) Q_{sys} is the mean system flow rate ((L/s) A_{irrig} is area irrigated (ha)

Eqn 7 Operating system capacity (SC_{op})

The flow of water per hectare of irrigated area that can be supplied in the time that the system is operating. It is the potential system capacity adjusted by the ratio of time irrigating per rotation to rotation time.

$$SC_{op} = SC_{pot} \times \frac{T_{irrig}}{T_{rot}}$$

Where

SCop is operating system capacity (L/s/ha)

*SC*_{pot} is potential system capacity (L/s/ha)

 T_{irrig} is time irrigating per rotation (hrs)

T_{rot} is time per rotation (hrs)

5.2.1.3 Efficiency calculations

Eqn 8 Seasonal application efficiency

Seasonal application efficiency (SAE) is given by the ratio of water retained in the root zone to water applied to the field, over a full irrigation season or year.

$$SAE = \frac{\overline{D}_{wr}}{\overline{D}_{wa}} \times 100$$

Where

SAE is the seasonal application efficiency

D_{wr} is the average depth of water retained

 D_{wa} is the average depth of water applied

Eqn 9 Weighted seasonal application efficiency (SAEw)

The overall SAE is a weighted average of these calculated values.

$$SAE_{w} = \frac{AE_{lq} + 2AE_{mean} + AE_{hq}}{4} \times 100$$

Where

SAEwis weighted seasonal application efficiencyIqis low quarter zonemeanis field average zone

hq is high quarter zone

Eqn 10 Potential low quarter application efficiency (PAEIq)

The single event potential application efficiency is estimated from field distribution uniformity and surface losses due to runoff and leakages. The value calculated can be used to determine the scheduling co-efficient.

$$PAE_{lq} = DU_{lq} \times (1.0 - (RO + SL))$$

Where

 PAE_{la} is potential low quarter application efficiency

*DU*_{la} is low quarter distribution uniformity

RO is field runoff

SL is system leakages

Eqn 11 Low quarter irrigation adequacy (IA_{Iq})

The ratio of the mean low quarter depth applied, to the mean target depth required across the field as a whole.

$$AD_{lq} = \frac{d_{lq}}{d_{t \arg et}}$$

Where

- d_{lq} is low quarter applied depth
- *d*_{target} is targeted application depth

Eqn 12 Seasonal potential soil moisture deficit (PSMD_{season})

Seasonal PSMD is calculated by summing period PSMD's calculated as in Eqn 3.

 $PSMD_{season} = \sum (PSMD_1 : PSMD_n)$

Where

PSMD _{season}	is seasonal potential soil moisture deficit
PSMD₁	is potential soil moisture deficit in the first period
PSMD _n	is potential soil moisture deficit in the n th period

And where

$$PSMD_2 > PSMD_1$$

Eqn 13 Seasonal deep percolation (SDP)

Includes all drainage whether from irrigation or precipitation. It is estimated from the balance of water not retained in the root zone, calculated after any surface losses have been accounted for.

$$SDP = \sum (DP_1 : DP_n)$$

Where:

SDP is seasonal deep percolation

DP deep percolation in periods 1 to n

Eqn 14 Seasonal irrigation deep percolation (SDP_i)

Seasonal deep percolation resulting from irrigation is a measure of the amount of irrigation water applied that drains from the soil profile. It is, in effect, seasonal application in-efficiency.

$$SDP_i = (1 - SAE)$$

Where:

SDP_i is seasonal deep percolation from irrigation

SAE is seasonal application efficiency (Eqn 8)

Eqn 15 Drought induced yield loss (YL_{di})

Calculated from potential (farmer expected) yield, PSMD and the drought response factor:

$$YL_{di} = Y_{pot} \times PSMD \times F_{dr}$$

Where:

YL_{di} is drought induced yield loss

 Y_{pot} is the Potential Yield (t/ha)

PSMD is potential soil moisture deficit (mm)

 F_{dr} is the drought response factor (%yield / mm PSMD)

Eqn 16 Value of lost yield (YL_v)

The value of lost yield is determined from the value of the crop and the amount of lost yield.

 $YL_v = YL_{di} x Price$

Where:

 YL_{ν} is the value of lost yield (\$/ha)

YL_{di} is drought induced yield loss

Price is price paid per unit yield

Eqn 17 Value of wasted water (V_{ww})

One estimate of the cost of water non-beneficially used is to multiply the amount of irrigation water lost through deep percolation, runoff and off-target application by the price paid for the water.

 $V_{ww} = 10 \times (SDP_i + RO + OTA) \times P_w$

where:

 V_{ww} is the value of wasted water (\$/mm/ha)

SDP_i is seasonal deep percolation from irrigation (i	(mm	1)
---	-----	----

- *RO* is depth equivalent lost through run-off (mm)
- OTA is depth equivalent of off-target application (mm)

 P_w is the price paid for water (\$/m³)

10 constant converting m³/ha to mm/ha

Eqn 18 Value of wasted energy (V_{we})

$$V_{we} = \frac{10 \times (SDP_i + RO + OTA) \times (EC_{vol} \times P_{energy})}{(E_{punp} \times E_{hydraulic})}$$

where:

	V _{we}	is the value of wasted water (\$/mm/ha)			
	SDP _i	is seasonal deep percolation from irrigation (mm)			
RO is depth equivalent lost through run-of OTA is depth equivalent of off-target applic EC_{vol} is volumetric energy consumption P_{energy} is the price paid for energy (\$/kWhr)		is depth equivalent lost through run-off (mm)			
		is depth equivalent of off-target application (mm)			
		is volumetric energy consumption			
		is the price paid for energy (\$/kWhr)			
	E_{pump}	is pump efficiency			
	Ehydraulid	s hydraulic efficiency			
10 constant converting m ³ /ha to mm/ha					

Eqn 19 Irrigation requirement (IR)

Irrigation requirement is given by crop water requirement plus any additional beneficial water requirement less received precipitation and stored soil moisture.

$$IR = \frac{(ET_{crop} + WR_b)}{(DU_{lq})} (P + ASM)$$

Where:

IR is irrigation requirement

- ET_{crop} is crop water use by evapo-transpiration
- WR_b is beneficial water requirement applied by irrigation system

P is precipitation

ASM is available soil moisture

*DU*_{la} is low quarter Distribution uniformity

5.2.1.4 **Base calculations**

Eqn 20 Coefficient of variation (Cv)

The coefficient of variation is a statistical measure of variation within a sample, calculated using the formula:

$$C_v = \frac{s}{x}$$

where

 C_{v} is the coefficient of variation

is the standard deviation in the sample s

is the mean value from the sample х

12

and

Eqn 21 Standard deviation from the mean (s)

$$s = \left[\frac{\sum_{i=1}^{n} \left(x_i - \overline{x}\right)^2}{n-1}\right]$$

where

is the performance of an individual within the sample X_i

i is a number assigned to identify a particular individual

is the number of individuals in the sample

A Cv of 0.05 implies 68% of flows are within 5% of the mean, and 95% of flows within 10% of the mean (DAM).

Eqn 22 Emitter pressure flow relationship

п

The relationship between emitter operating pressure and flow rate is given by the equation:

$$q = K_d p^x$$

where

q	is the emitter flow rate
K _d	is the emitter discharge coefficient
p	is operating pressure
x	is the emitter discharge exponent

is the emitter discharge exponent

Eqn 23 Emitter discharge exponent

The emitter discharge exponent can be determined using the formula (DAM):

$$x = \frac{\log\left(\frac{q_1}{q_2}\right)}{\log\left(\frac{p_1}{p_2}\right)}$$

where

x is the emitter discharge exponent

 $p_1 \& p_2$ are pressures

 $q_1 \& q_2$ are flows at $p_1 \& p_2$ respectively.

The coefficient is typically between 0 and 1, often in the range 0.5 - 0.7.

A coefficient value = 0 describes an emitter where flow is totally independent of pressure, and a value = 1 describes an emitter where flow increases directly in proportion to pressure.

Eqn 24 Emitter discharge coefficient (K_d)

The emitter discharge coefficient is determined from the rearranged pressure flow equation:

$$K_d = \frac{q}{p^{\lambda}}$$

where terms are as above.

Eqn 25 Manufacturer's emission uniformity (*EU_{man}*)

Manufacturer's emission uniformity is determined from physical laboratory measurements at a standard temperature.

Values of EU_{man} are typically reported as a percentage value, but should be converted to a decimal. EU_{man} is derived from the coefficient of variation using the formula:

$$EU_{man} = 1.0 - Cv_{man}$$

where

EU_{man} is manufacturer's emission uniformity

Cv_{man} is the coefficient of variation in manufacturing

5.2.1.5 Combination formulae

Eqn 26 Weighted averages

When combining data from seasonal irrigation estimates that split into low quarter, mean and high quarter calculations it is necessary to apply a weighted average method.

$$X_{field} = \frac{X_{lq} + 2X_{mean} + X_{hq}}{4}$$

Where:

 X_{field} is the overall result for the field for any particular parameter, X

 X_{la} is the result for the area receiving the low quarter irrigation

 X_{mean} is the result for the area receiving the mean irrigation

 X_{ha} is the result for the the area receiving the high quarter irrigation

See also Eqn 9

Eqn 27 Clemmens-Solomon

Combination of uniformity components where their influence is multiplicative should use the Clemmens-Solomon statistical procedure:

$$SDU_{lq} = \left[1 - \sqrt{(1 - DU_1)^2 + (1 - DU_2)^2 + (1 - DU_n)^2}\right]$$

Where:

SDU_{la} is low quarter system distribution uniformity

 DU_n is low quarter distribution uniformity of factor *n*

Examples include combining Pressure DU and emitter manufacturing DU.

Eqn 28 DU of combined populations

Where several populations are to be combined to determine an overall uniformity, the all data should be aggregated and a new DU determined from the whole data set.

It is not correct to take a simple mean of several DU's to find an overall value.

If, for example, three areas (three drip blocks or three traveller transects) each had perfect DU (DU=1.00) but the measured application depths were different in each, the overall DU is not DU=1.00, but some lower value.

5.2.1.6 Uniformity calculations

Eqn 29 Distribution uniformity (DU_{1q})

This Code adopts the low quarter distribution uniformity ratio.

The low quarter distribution uniformity coefficient formula is:

$$DU_{lq} = \frac{\overline{V_{lq}}}{\overline{V}}$$

where

- DU_{la} is the lowest quarter distribution uniformity coefficient
- V_{lq} is the average volume (or alternatively the mass or depth) of water collected in the lowest quarter of the field
- *V* is the average volume (or alternatively mass or depth) of water collected by all collectors used in the data analysis

Eqn 30 Distance adjusted lowest quarter determination (D_{adj})

The distance adjusted lowest quarter of collectors is determined by ranking collected volumes and adjusting for distance from the pivot centre.

- 1. Rank all evaporation adjusted collector volumes, V.
- 2. Multiply each adjusted volume by its distance from the centre (*S*) to give the Distance adjusted volume *Va*.
- 3. Sum distances from pivot centre (*Si*) cumulatively from the lowest value. Divide by four to determine the low quartile point.
- 4. The low quarter is all the results at or below the low quartile point.

Eqn 31 Centre pivot radial uniformity

The low quarter distribution uniformity coefficient formula is adjusted to account for increasing field areas represented by collectors placed further from the pivot centre.

$$DU_{lq} = \frac{\overline{Va_{lq}}}{\overline{Va}}$$

where

- DU_{lq} is the lowest quarter distribution uniformity coefficient
- *Va_{lq}* is the distance adjusted average volume (or alternatively the mass or depth) of water collected in the lowest quarter of the field, calculated as:

Eqn 32 Distance adjusted average volume

$$\overline{Va_{lq}} = \frac{\sum_{i=1}^{n/4} Va_i S_i}{\sum_{i=1}^{n/4} S_i}$$

Where:

i is a number assigned to identify a particular collector, normally beginning with the collector with the lowest catch volume (i = 1) and ending with i = n for the collector with the highest catch volume

- *n* is the number of collectors used in the data analysis
- S_i is the distance of the *i*th collector from the pivot point
- *Va* is the distance adjusted average volume (or alternatively mass or depth) of water collected by all collectors used in the data analysis, calculated as:

$$\overline{Va} = \frac{\sum_{i=1}^{n} Va_i S_i}{\sum_{i=1}^{n} S_i}$$

Eqn 33 Christiansen coefficient (CU_c)

The Christiansen formula is:

$$CU_{c} = \left[1 - \frac{\sum_{i=1}^{n} \left|V_{i} - \overline{V}\right|}{\sum_{i=1}^{n} V_{i}}\right]$$

Where

CU_c is the Christiansen coefficient of uniformity

n is the number of collectors used in the data analysis

i is a number assigned to identify a particular collector

Vi is the volume (or alternatively the mass or depth) of water collected in the *i*th container

 \overline{V} is the arithmetic average volume (or alternatively mass or depth) of water collected by all collectors used in the data analysis, calculated as:

$$\overline{V} = \frac{\sum_{i=1}^{n} V_i}{n}$$

Eqn 34 Heermann-Hein uniformity coefficient

The Christiansen uniformity coefficient formula is adjusted as proposed by Heermann and Hein to account for increasing field areas represented by collectors placed further from the pivot centre.

The Heermann and Hein formula is:

$$CU_{r} = \left[1 - \frac{\sum_{i=1}^{n} \left|V_{i} - \overline{V_{w}}\right|S_{i}}{\sum_{i=1}^{n} \left|V_{i}S_{i}\right|}\right]$$

where

CU_r is the Heermann and Hein coefficient of uniformity

- *n* is the number of collectors used in the data analysis
- *i* is a number assigned to identify a particular collector, normally beginning with the collector located nearest the pivot point (i = 1) and ending with i = n for the collector furthest from the pivot point
- *V_i* is the volume (or alternatively the mass or depth) of water collected in the *i*th container
- S_i is the distance of the *i*th collector from the pivot point
- V_w is the weighted average volume (or alternatively mass or depth) of water collected, calculated as:

$$\overline{V_w} = \frac{\sum_{i=1}^n V_i S_i}{\sum_{i=1}^n S_i}$$

Eqn 35 Emission uniformity (*EU*)

Corresponds mathematically to the Christiansen coefficient and is based on the coefficient of variation using the formula:

$$EU = (1.0 - Cv)$$

where

EU is the statistical emission uniformity

Cv is the coefficient of variation

Eqn 36 Emission v's Distribution Uniformity

Emission uniformity (EU) is related to low quarter distribution uniformity (DU_{lq}) by the equation:

$$DU_{la} = 1 - (1.27C_{y})$$
 or $DU_{la} = 1 - 1.27(1 - EU_{stat})$

The factor $k_{lq} = 1.27$ equates the statistical uniformity coefficient to a low quarter uniformity equivalent assuming a normal distribution.

Eqn 37 Emitter emission uniformity (EEU_{la})

$$EEU_{lq} = 1 - 1.27 \left(\frac{\sqrt{(Cv_{man})^2 + (\overline{Cv_{defect}})^2}}{(\sqrt{n})} \right)$$

where

*EEU*_{la} is the emitter emission uniformity

 Cv_{man} is the coefficient of emitter manufacturing variation

 Cv_{defect} is the mean coefficient of variation due to blockages, wear and tear determined from emitter tests 1, 3 & 4.

n is the number of emitters per plant

The factor $k_{iq} = 1.27$ equates the statistical uniformity coefficient to a low quarter uniformity equivalent assuming a normal distribution.

Eqn 38 Uneven drainage coefficient (*F*_{drainage})

$$F_{drainage} = 1 - \left(\frac{n_{ER}}{100} \left(\frac{(T_{ER})}{(T_{irrig})}\right)\right)$$

where

 $F_{drainage}$ is the effect of unequal system drainage

- *n_{ER}* is the percentage of emitters that run after system shut down
- T_{ER} is the average time for which those emitters run after system shut down
- *T_{irrig}* is normal duration of a scheduled irrigation event

Eqn 39 Uneven spacing coefficient (*F*_{spacing})

$$F_{spacing} = \frac{(D_{Z\min})}{(D_{Zmean})}$$

where

F_{spacing} is the effect of spacing

- *D_{Zmin}* is the minimum depth applied to a zone
- D_{Zmean} is the mean depth applied to the whole field

Eqn 40 Pressure adjusted emitter flow (Q_{Padj})

$$Q_{Padj} = Q_{Em} \left(\frac{\left(\overline{P_{field}} \right)^{x}}{\left(P_{test} \right)^{x}} \right)^{x}$$

Where:

 Q_{Padj} is Pressure adjusted emitter flow

- *Q_{Em}* is measured emitter flow
- P_{field} is mean pressure determined from whole field pressure tests
- *P_{test}* is pressure at which block was flow tested
- *x* emitter discharge exponent

Eqn 41 Emitter defect coefficient of variation (*Cv_{defect}*)

$$Cv_{defect} = \sqrt{(Cv_{QPadj})^2 - (Cv_{man})^2}$$

where

Cv_{defect} is the effect of emitter blockages, wear and tear

Cv_{QPadj} is the coefficient of variation of pressure adjusted flows

Cv_{man} is the manufacturer's coefficient of variation of emitters

NOTE: The Clemmens – Solomon equation (Eqn 27) causes problems here if the measured field uniformity is better than CV_{man} as it would require a square root of a negative number.

Eqn 42 Design Uniformity (EU_{des})

$$EU_{design} = \left[1.0 - \frac{1.27Cv_{man}}{\sqrt{n}}\right] \frac{q_m}{q_a}$$

where

EU_{des} is design emission uniformity

Cvman is the manufacturer's coefficient of variation of emitters

n is the number of emitters per plant

- q_m is the mean low quarter emitter discharge due to the mean low quarter pressure
- *q_a* is the overall mean emitter discharge

(Keller and Karmeli, 1974: ASAE 405.1)

5.2.1.7 Application calculations

```
Eqn 43 Mean system application depth (D<sub>mf</sub>)
```

$$D_{mf} = \frac{Q_m \times T_{irrig}}{A}$$

where

 D_{mf} mean application depth based on system flow rate (mm)

 Q_m system flow rate (L/h)

 T_{irrig} is the duration of an irrigation event (hours)

A area of the irrigated strip (m2)

Eqn 44 Infiltration depth (drip-micro and long-lateral)

$$D_{\text{inf}} = \frac{Q_{\overline{x}} \times T_{irrig}}{A_{wetted}}$$

where

<i>Dinf</i> is the depth water infiltrates	(mm)
--	------

- Q_x is the average flow per emitter (L/h)
- T_{irrig} is the duration of an irrigation event (h)

 A_{wetted} is the wetted area per emitter (m²)

Eqn 45 Equivalent applied depth (drip-micro)

$$Dz_{app} = \frac{Q_{\overline{x}} \times n_e \times T_{irrig}}{A_{plant}}$$

where

Dz _{app}	is the A	pplied	Depth	in an	given	zone,	z
					•		

 Q_x is the average flow per emitter

N_e is the number of emitters per plant

 T_{irrig} is the duration of an irrigation event

A_{plant} is the ground area per plant

Eqn 46 Reference application rate (*R_{ir}*)

$$R_{ir} = \frac{\overline{D}}{T_{irrig}}$$

Where:

- *R_{ir}* is the reference application rate (Assumed constant)
- *D* is mean depth of water from all collectors used in analysis
- T_{irrig} is the duration of an irrigation event

Eqn 47 Instantaneous application rate (*R_{it}*)

(changed from FDIS)

$$R_{it} = \overline{D}_i \left(\frac{V_i}{A_w}\right)$$

Where:

- *R_{it}* is instantaneous application rate for transect *i* (mm/hr)
- D_i is mean application depth applied to strip width at transect *i* (mm)
- A_w is wetting area of distribution system (m)
- V_i is mean travel speed of the distribution system at transect *i* (m/h)

Eqn 48 Instantaneous application rates – linear move (*R_{il}*)

$$R_{il} = 3,600 \left(\frac{Qm}{L_e \times W} \right)$$

Where:

- R_{ii} is the instantaneous application rate (mm/hr)
- W is the wetted width (diameter) of nozzle pattern (m)

 Q_m is the Machine discharge (L/s)

L_e is the effective length of lateral (m)

The constant 3,600 assumes that the peak application rate is about 4π that of the average application rate if the application rate pattern is elliptically shaped (CPD).

Eqn 49 Instantaneous application rates – centre pivot (R_{ip})

$$R_{ip} = 9,170 \left(\frac{Q_f}{r_e^2}\right) \frac{r}{W}$$

Where:

 R_{ip} is the instantaneous application rate at radius, r (mm/hr)

r is radial distance from pivot centre to point under study (m)

W is the wetted width (diameter) of nozzle pattern at r(m)

- *Q_f* is the discharge for the full irrigated circle (L/s)
- *r_e* is the effective radius of the full irrigated circle (m)

The constant 9,170 assumes peak application rate is about 4π the average application rate if the application rate pattern is elliptically shaped (CPD).

5.2.1.8 Additional calculations

Eqn 50 Machine speed, (S)

$$S_i = 60 \times \left[\frac{D_i}{T_i}\right]$$

where

 S_i is machine travel speed at position, *i* (m/minute)

 D_i is a selected travel distance at position i (m)

- T_i is the time taken for machine to move distance D_i (seconds)
- 60 is constant changing seconds to minutes

Eqn 51 Speed difference for travelling irrigator (*DV_{max}*)

$$Dv_{\max} = \left[\frac{S_{\max} - S_{\min}}{\overline{S}}\right]$$

where

 $DV_{\rm max}$ max deviation in travel speed relative to the mean

S_{max} maximum machine speed

S_{min} minimum machine speed

 \overline{S} mean machine speed (m/h)

Eqn 52 Hydraulic efficiency (E_{hyd})

$$E_{hydx} = 100 - \left[\frac{(P_{HW} + (EL_{HW} \times 9.81)) - (P_{EI} + (EL_{EI} \times 9.81))}{P_{HW}}\right] \times 100$$

where

 E_{hvdx} is hydraulic efficiency (%)

 P_{HW} is pressure after the headworks (kPa)

 EL_{HW} is elevation at headworks (m)

 P_{EI} is pressure at entry to irrigator/distribution system (kPa)

EL_{EI} is elevation at entry to irrigator/distribution system (m)

Headworks efficiency (E_{hw}) Eqn 53

$$E_{HW} = 100 - \left[\frac{P_{PD} - P_{HW}}{P_{PD}}\right] \times 100$$

where

 E_{HW} is hydraulic efficiency (%)

 P_{PD} is pressure after the pump (kPa)

 P_{HW} is pressure after the headworks (kPa)

Eqn 54 Pumping efficiency (E_{pump})

$$E_{pump} = \left| \frac{(Q_{sys} \times 60) - (P_{NP} / 9.81)}{P_{PD}} \right| \times 100$$

where

 E_{pump} is pumping efficiency (%)

Q_{sys} is pumped volume (system flow (from water meter))

_

 $P_{\rm np}$ is nett pump pressure (kPa)

 P_{PD} is pressure after the pump (kPa)

Eqn 55 Theoretical return interval (RI_{the})

The theoretical return interval is calculated from the readily available water and the crop water use. Crop water use is determined from Peak PET and crop factor.

$$RI_{ther} = \left[\frac{RAW}{(PeakPETxCropFactor)}\right]$$